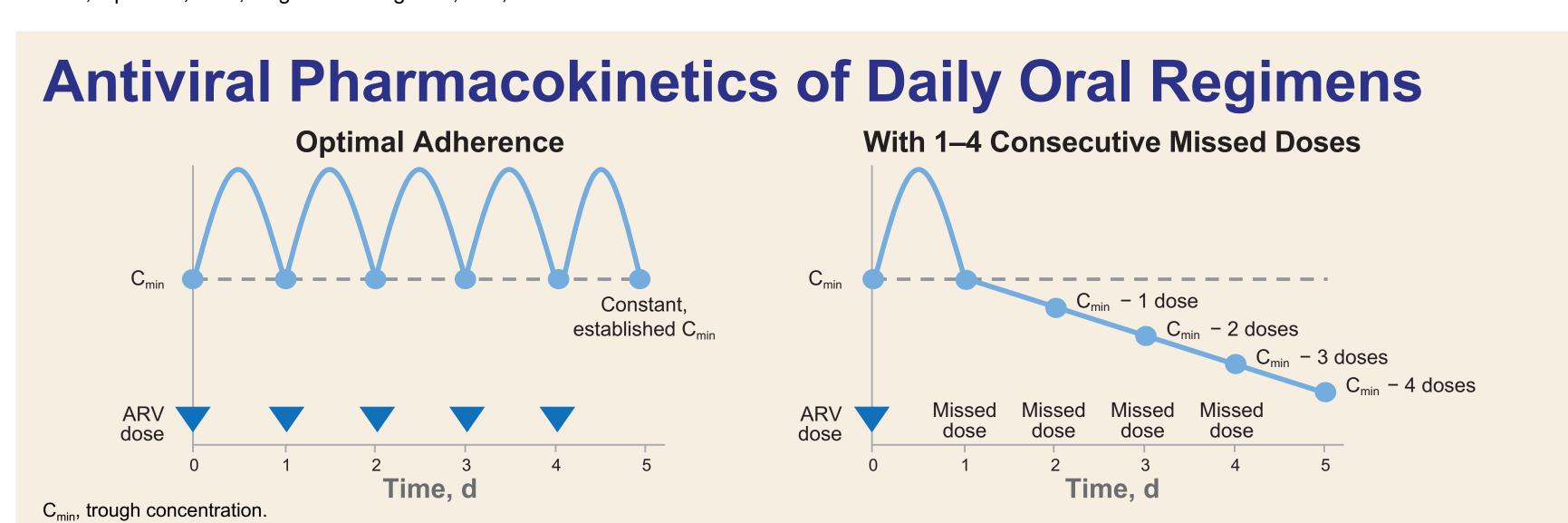
In Vitro Forgiveness of Oral and Long-Acting INSTI-Containing Regimens at Drug Concentrations Simulating Variable Adherence

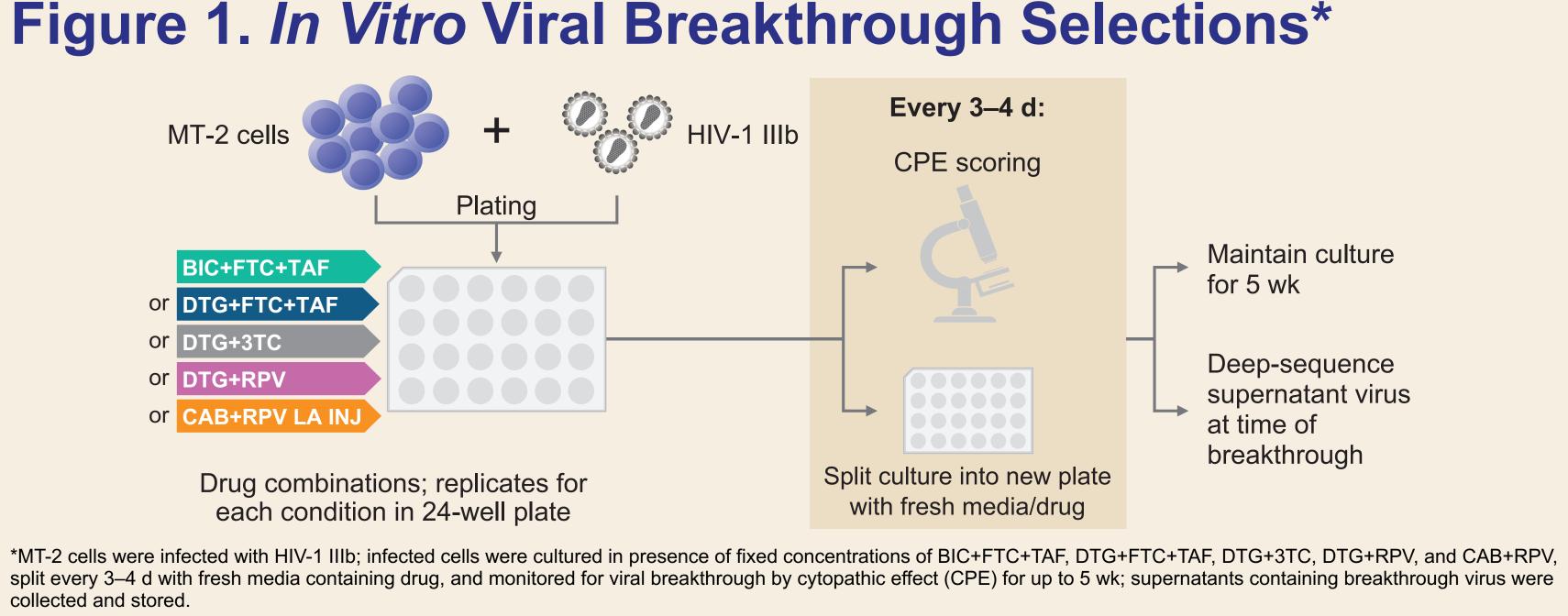

Rima K. Acosta, Michelle L. D'Antoni, Andrew Mulato, Stephen R. Yant, Tomas Cihlar, Kirsten White — Gilead Sciences, Inc., Foster City, California, USA

Gilead Sciences, Inc. 333 Lakeside Drive Foster City, CA 94404

Introduction

- ◆ EACS guidelines for initial treatment of HIV-1 infection recommend daily oral regimens anchored by an INSTI plus 1 or 2 NRTIs, including the STR of BIC/FTC/TAF, the combination of DTG+FTC/TAF, and the STR of DTG/3TC¹
- The 2-drug daily oral STR of DTG/RPV is approved for PWH switching ARV regimens
- Recently, the LA INJ regimen CAB+RPV was approved for monthly and 2-month dosing in some countries
- Lapses in adherence to daily ARV drugs can lead to virologic failure and development of drug resistance, but regimens will have distinct durations of "forgiveness" (avoiding viral rebound and resistance in the setting of suboptimal adherence)
- Long-acting regimens may be beneficial for those who want alternatives to daily oral medications, but they cannot be self-administered and there is potential for resistance development associated with low drug exposure, inconsistent dosing, preexisting drug resistance, or HIV-1 subtype²
- Previous in vitro experiments have shown that when using an inoculum of wild-type or M184V virus, BIC+FTC+TAF was better at preventing viral breakthrough and emergent drug resistance than DTG+3TC3
- In vitro viral breakthrough experiments should be analyzed comparatively; clinical trials assessing the impact of missed doses of these ARV combinations have not been conducted

3TC, lamivudine; ARV, antiretroviral; BIC, bictegravir; CAB, cabotegravir; DTG, dolutegravir; FTC, emtricitabine; INSTI, integrase strand transfer inhibitor; LA INJ, long-acting injectable; NNRTI, nonnucleoside reverse transcriptase inhibitor; NRTIs, nucleoside reverse transcriptase inhibitors; PWH, people with HIV; RPV, rilpivirine; STR, single-tablet regimen; TAF, tenofovir alafenamide.


 Missing daily oral ARV doses results in a predictable decrease of systemic exposures to each drug in the regimen based on its established clinical half-life (t_{1/2})

Objectives

◆ To understand relative time to in vitro viral breakthrough and resistance barrier using simulated human drug exposures at either full or suboptimal treatment adherence to BIC+FTC+TAF, DTG+FTC+TAF, DTG+3TC, DTG+RPV, and CAB+RPV LA INJ

Methods

Figure 1. In Vitro Viral Breakthrough Selections*

♦ Simulation of drug C_{min} in vitro:

- To simulate clinical C_{min}, pharmacokinetic data from participants in clinical trials were used and corrected for human plasma protein binding for BIC, DTG, RPV, and CAB
- For the NRTIs FTC, 3TC, and TAF, intracellular active metabolite concentrations were used

Simulation of missed daily oral doses:

- To simulate 2 and 4 consecutive missed doses (C_{min} - 2 and C_{min} - 4, respectively), drug concentrations were adjusted by plasma t_{1/2} for BIC, DTG, and RPV, and by intracellular t_{1/2} for NRTIs (TAF, FTC, and 3TC)

− C_{min} − X doses were determined as C_{min} × 0.5^{24×/t_{1/2}}

Genotypic analyses:

- Each viral breakthrough supernatant was sequenced by next-generation sequencing (SEQ-IT GmbH & Co.KG, Kaiserslautern, Germany) and mutations were reported if present at ≥2%

 A bioinformatics filter was used to remove APOBEC-mediated G-to-A hypermutated sequences

Mutations were observed between 2.1% and 69.3% per culture

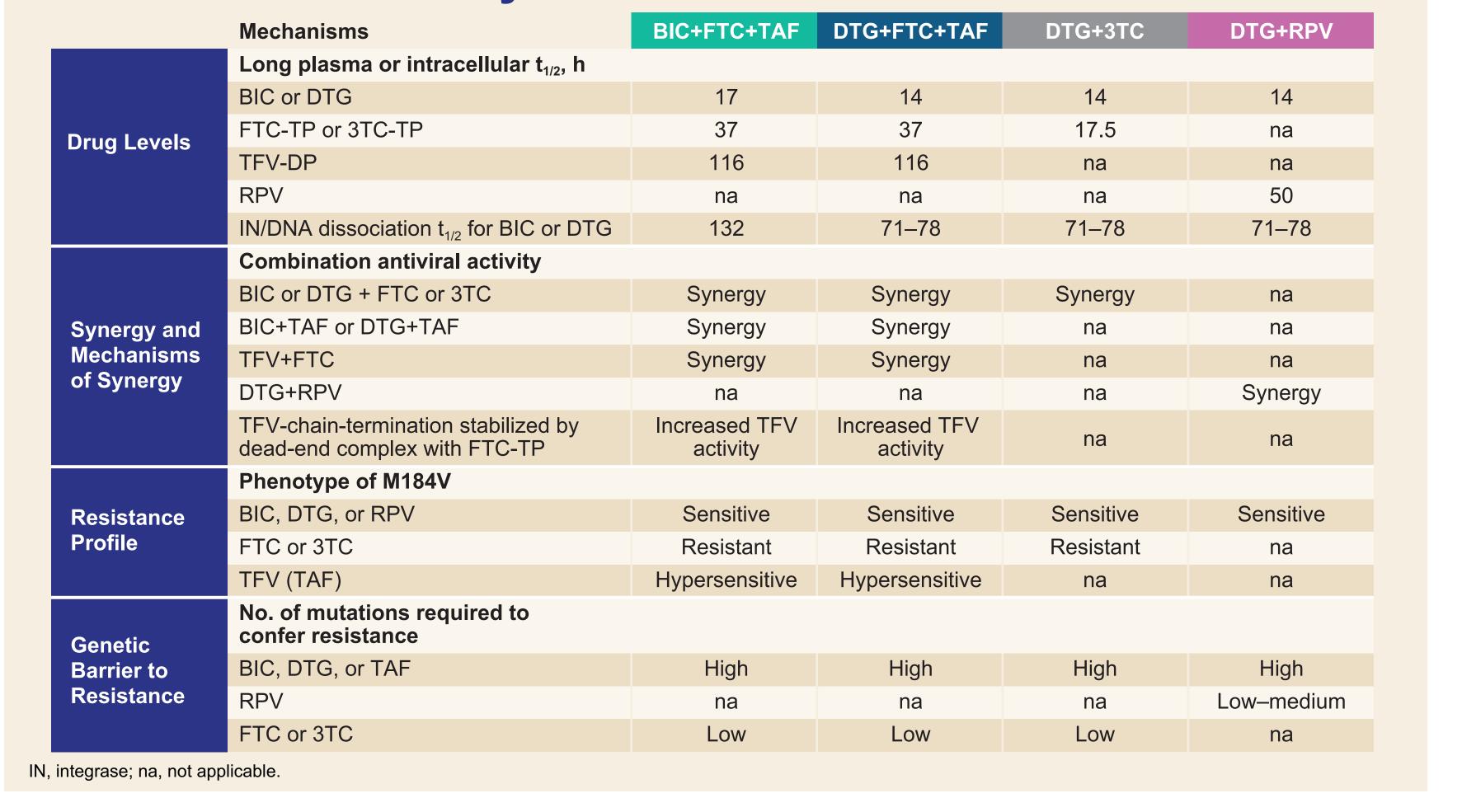
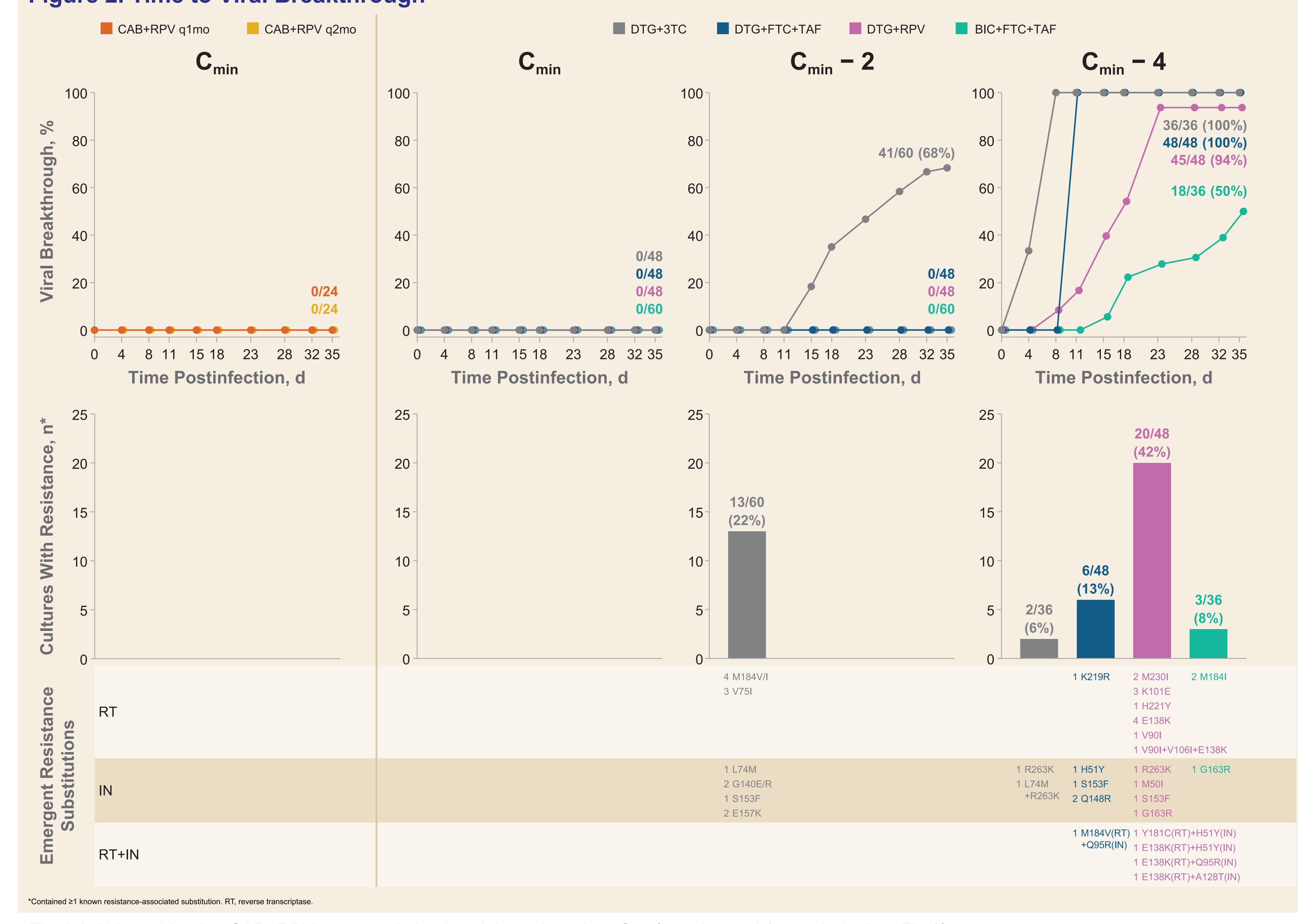

Results

Table 1. Drug Concentrations for Cell Culture


"(IIIIVAIPIII)							LA INJ Regillien			
quivalents	Components of Daily Oral Regimens						q4wk (q1mo)		q8wk (q2mo)	
	BIC	FTC	TAF	DTG	3TC	RPV	САВ	RPV	CAB	RPV
Clinical dose, mg*	50	200	25	50	300	25	400	600	600	900
Molecular weight, g/mol	449.4	247.2	534.5	419.4	229.3	366.4				
Clinical C _{min} , µg/mL	2.61	0.096	0.008	1.11	0.042	0.08				
Clinical C _{min} , nM	5808	388	15	2515	265	218	6365	258	3602	176
Human serum shift [†]	43.6	1.0	1.0	27.5	1.0	32	74	32	74	32
$t_{1/2}, h^{\ddagger}$	17	37	116	14	17.5	50				
CCE C _{min} , nM [§]	133	388	15	91	265	6.8	86	8.1	49	5.5
C _{min} – 2	19	158	11	8.5	40	3.5				
C _{min} - 4	2.7	64.2	8.5	8.0	5.9	1.8				

- BIC, DTG, RPV, and CAB concentrations were calculated using their human plasma clinical C_{min} according to their prescribing information, and adjusted for human plasma protein binding (Table 1)4-10
- ◆ TAF C_{min} used the active metabolite TFV-DP at its physiologic concentration in peripheral blood mononuclear cells from TAF-treated individuals^{14,15}
- ◆ FTC and 3TC concentrations were set at their human plasma-free adjusted C_{min} 11-13

Table 2. Mechanisms of Forgiveness and Barrier to Resistance for Daily Oral Combinations

Figure 2. Time to Viral Breakthrough

◆ The LA INJ combination CAB+RPV prevented viral breakthrough at drug C_{min} (monthly and 2-month dosing; Fig 2)

Conclusions

- The INSTI-containing combinations of BIC+FTC+TAF, DTG+FTC+TAF, DTG+3TC, and DTG+RPV had no viral breakthrough with concentrations simulating high adherence
 - Regimen differentiation occurred when multiple missed doses were simulated in vitro; BIC+FTC+TAF had the highest forgiveness and barrier to resistance
 - In vitro viral breakthrough experiments should be analyzed comparatively; controlled clinical trials assessing the impact of missed doses of these ARV combinations have not been conducted
- The long-acting injectable combination of CAB+RPV had no viral breakthrough at concentrations simulating C_{min} for both monthly and 2-month dosing; further studies with CAB+RPV are needed to understand forgiveness during the pharmacokinetic tail of this regimen

References: 1. EACS. Guidelines Version 10.1; October 2020; 2. Cutrell A, et al. AIDS 2021;35:1333-42; 3. Mulato A, et al. JAIDS 2021;86:369-77; 4. Biktarvy [package insert]. Foster City, CA: Gilead Sciences, Inc.; revised 9/21; 5. Dovato [package insert]. Research Triangle Park, NC: ViiV Healthcare; 3/21; 6. Dovato [package insert]. 6. Juluca [package insert]. Research Triangle Park, NC: ViiV Healthcare; 3/21; 7. Cabenuva [package insert]. Research Triangle Park, NC: ViiV Healthcare; 3/21; 7. Cabenuva [package insert]. Research Triangle Park, NC: ViiV Healthcare; 1/21; 8. Margolis D, et al. Lancet 2017;390:1499-510; 9. Tsiang M, et al. Antimicrob Agents Chemother 2016;60:7086-97; 10. European Medicines Agency. CHMP assessment report: Edurant; 9/22/11; 11. Dickinson L, et al. Antimicrob Agents Chemother 2011;56:1427-33; 13. Yuen GJ, et al. Antimicrob Agents Chemother 2014;48:176-82; 14. Callebaut C, et al. PLoS One 2017;12:e0169948; 15. Custodio JM, et al. Antimicrob Agents Chemother 2016;60:5235-4. Acknowledgments: The authors thank Alex Thielen and Martin Daeumer at Seq-IT, and Ross Martin and Silvia Chang at Gilead for deep-sequence analyses. This study was funded by Gilead.