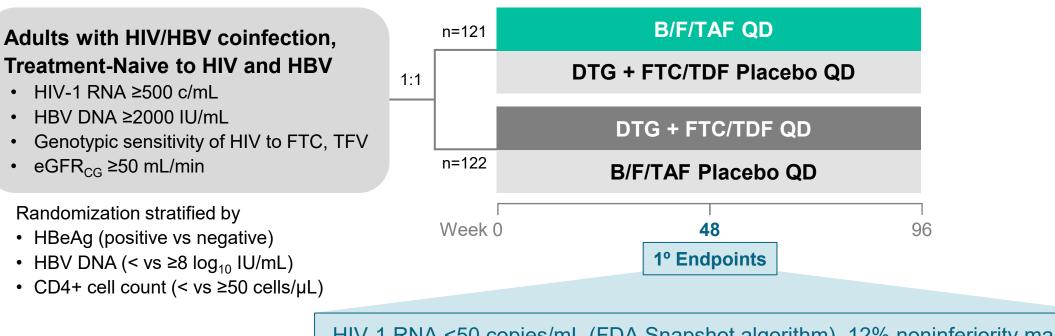
Week 48 Results of a Phase 3 Randomized Controlled Trial of B/F/TAF vs DTG + F/TDF as Initial Treatment in Adults with HIV/HBV Coinfection (ALLIANCE)

Anchalee Avihingsanon,¹ Hongzhou Lu,² Chee Loon Leong,³ Chien-Ching Hung,⁴ Ellen Koening,⁵ Sasisopin Kiertiburanakul,⁶ Man-Po Lee,⁷ Khuanchai Supparatpinyo,⁸ Fujie Zhang,⁹ Sophia Rahman,¹⁰ Michelle D'Antoni Brogan,¹⁰ Hongyuan Wang,¹⁰ Jason Hindman,¹⁰ Hal Martin,¹⁰ Jared Baeten,¹⁰ Taisheng Li¹¹

¹HIV-NAT, Thai Red Cross AIDS Research Centre, Bangkok; ²Shanghai Public Health Clinical Center, Shanghai; ³Department of Medicine, Kuala Lumpur General Hospital, Kuala Lumpur; ⁴National Taiwan University Hospital, Taipei; ⁵Instituto Dominicano de Estudio Virologicos – IDEV, Santo Domingo; ⁶Ramathibodi Hospital, Bangkok; ⁷Queen Elizabeth Hospital, Hong Kong; ⁸Chiang Mai University, Chiang Mai; ⁹Beijing Ditan Hospital, Capital Medical University, Beijing; ¹⁰Gilead Sciences, Inc., Foster City; ¹¹Peking Union Medical College Hospital, Beijing

RAIDS 2022 ²⁹ July–2 August Montréal, Québec, Canada


 I have no relevant financial relationships with ineligible companies to disclose

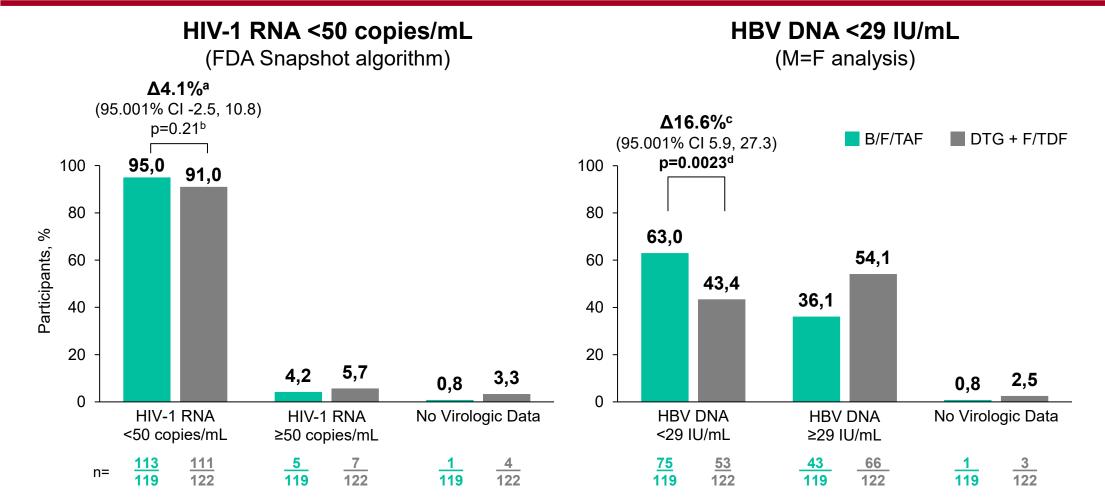
B/F/TAF for People With HIV/HBV Coinfection

- Chronic hepatitis B (CHB) affects ~8% of people with HIV, and HIV/HBV coinfection rates can reach 25% in areas where both viruses are endemic¹⁻³
 - Coinfection worsens morbidity and mortality; people with HIV/HBV coinfection have higher HBV DNA levels and have higher risk of cirrhosis and liver cancer than people with HBV monoinfection
- People with HIV/HBV coinfection should receive treatment to suppress both viruses
 - International guidelines recommend a TDF- or TAF-based ARV regimen in combination with 3TC or FTC as the NRTI backbone for most people with HIV/HBV coinfection⁴⁻⁷
- TDF and TAF are approved for the treatment of HBV, and both are widely used as part of an ARV regimen for HIV treatment, but <u>there are no randomized studies of TDF vs TAF-</u> <u>based ART in adults with HIV/HBV coinfection initiating treatment</u>

³TC, lamivudine; B/F/TAF, bictegravir/emtricitabine/tenofovir alafenamide; FTC, emtricitabine; NRTI, nucleos(t)ide reverse transcriptase inhibitor; TDF, tenofovir disoproxil fumarate. 1. Leumi S, et al. Clin Infect Dis. 2020;71:2799-806; 2. Kellerman SE, et al. J Infect Dis, 2003;188:571-7; 3. Kourtis AP, et al. N Engl J Med. 2012;366:1749-52; 4. WHO. Consolidated Guidelines on HIV Prevention, Testing, Treatment, Service Delivery and Monitoring: Recommendations for a Public Health Approach; 2021; 5. EACS Guidelines v11.0, October 2021; 6. DHHS. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents with HIV; Accessed 30 Jun 2022; 7. Saag MS, et al. JAMA, 2020;324:1651–69.

Study Design

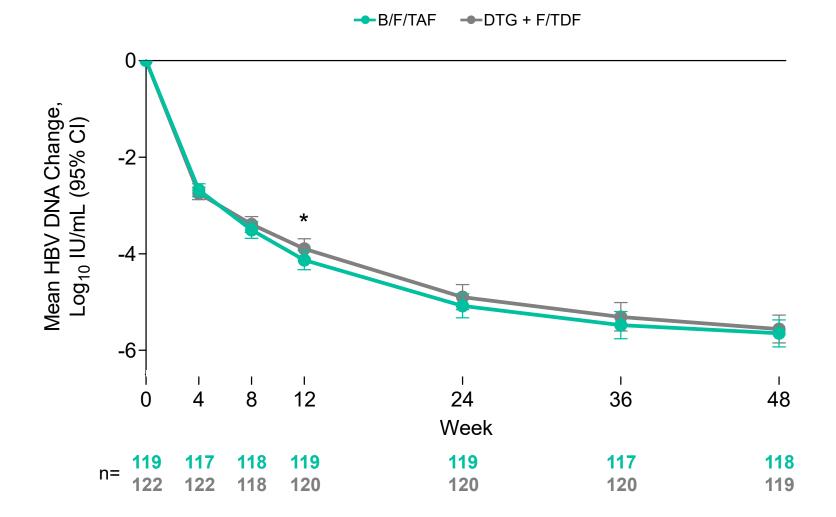
HIV-1 RNA <50 copies/mL (FDA Snapshot algorithm), 12% noninferiority margin HBV DNA <29 IU/mL (missing = failure analysis), 12% noninferiority margin


Enrollment and Baseline Characteristics

55

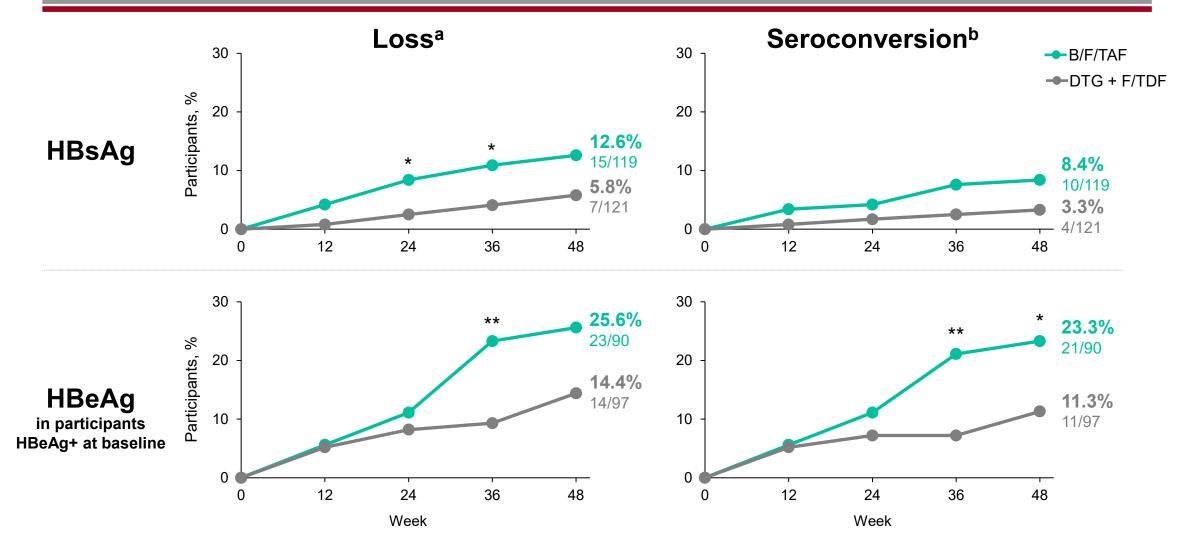
Participants by Geographies (Active Sites), n Thailand (6) 39 27 China (10) 29 15 Malaysia (9) 22 Taiwan (6) Dominican Republic (1) Turkey (2) $\begin{bmatrix} 4\\5 \end{bmatrix}$ Spain (4) $\begin{bmatrix} 4\\ 3 \end{bmatrix}$ Japan (3) Hong Kong (1) $\begin{bmatrix} 2\\ 3 \end{bmatrix}$ United States (3) Korea (1)

	B/F/TAF n=121	DTG + F/TDF n=122
Median age, y (IQR)	31 (27, 39)	32 (25, 38)
Female at birth, n (%)	9 (7)	2 (2)
Race/ethnicity, n (%)		
Asian	108 (89)	106 (87)
White	10 (8)	9 (7)
Black	2 (2)	6 (5)
Other	1 (1)	1 (1)
Median body mass index, kg/m ² (IQR)	22.2 (19.9, 24.7)	21.7 (19.3, 23.7)
Median HIV-1 RNA, log ₁₀ copies/mL (IQR)	4.7 (4.2, 5.1)	4.7 (4.3, 5.0)
HIV-1 RNA >100,000 copies/mL, n (%)	38 (31)	34 (28)
Median CD4 cells/µL (IQR)	245 (127, 383)	236 (121, 380)
CD4 count <200 cells/µL, n (%)	46 (38)	52 (43)
Median HBV DNA, log ₁₀ IU/mL (IQR)	8.0 (6.5, 8.4)	8.1 (6.6, 8.5)
HBV DNA ≥8 log ₁₀ lU/mL, n (%)	60 (50)	66 (54)
HBeAg positive, n (%)	92 (76)	97 (80)
ALT >ULN, n (%)*	60 (50)	47 (39)


Virologic Outcomes at Week 48: Co-primary Endpoints

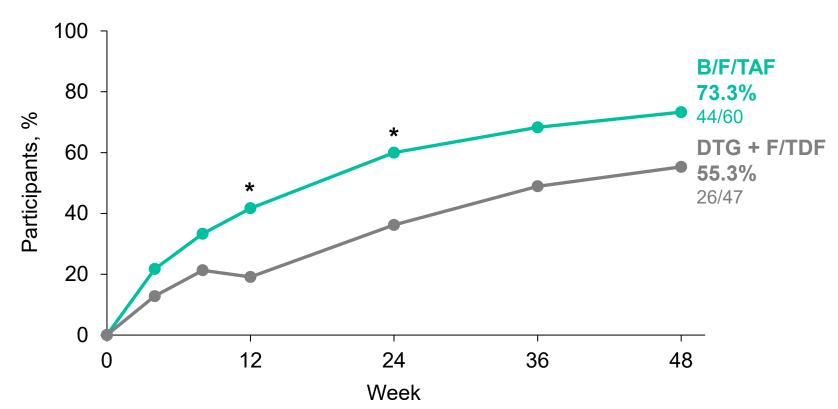
♦ Mean CD4 change from baseline, cells/µL (95% CI): B/F/TAF +200 (175, 226), DTG + F/TDF +175 (152, 198)

^aBased on Mantel-Haenszel (MH) proportions adjusted by baseline HIV-1 RNA stratum (< vs \geq 100,000 copies/mL); ^bCochran-Mantel-Haenszel (CMH) test stratified by baseline HIV-1 RNA stratum; ^cBased on MH proportions adjusted by baseline HBeAg status (positive vs negative) and HBV DNA category (< vs \geq 8 log₁₀ IU/mL); ^dCMH test stratified by baseline HBeAg status and baseline HBV DNA category. Full analysis set. M=F, missing = failure, CI, confidence interval.


Virologic Outcomes at Week 48: Change in HBV DNA

*p<0.05 using analysis of variance (ANOVA) model adjusted by baseline HBeAg stratum and HBV DNA stratum.

HBs/eAg Loss and Seroconversion at Week 48


M=F Serologically Evaluable Full Analysis Set

*p<0.05, **p<0.01, CMH tests for HBsAg loss and seroconversion stratified by baseline HBeAg status (positive vs negative) and baseline HBV DNA (< vs ≥8 log₁₀ IU/mL); tests for HBeAg loss and seroconversion stratified by baseline HBV DNA (< vs ≥8 log₁₀ IU/mL); aChanges from HBs/eAg+ at baseline to – at a postbaseline visit with baseline HBs/eAb –/missing; bHBs/eAg loss and HBs/eAb changes from –/missing at baseline to + at a postbaseline visit.

ALT Normalization Through Week 48

M=F (Full Analysis Set with Baseline ALT > ULN)

AASLD Criteria^a

Participants, n	B/F/TAF n=119	DTG + F/TDF n=122
Met criteria for resistance testing ^a	3	4
NRTI resistance detected	0	1
INSTI resistance detected	0	0

- No treatment-emergent resistance to any components of B/F/TAF occurred in the resistance analysis
 population
- One participant on DTG + F/TDF developed NRTI-resistant mutations K70E at Week 24 and M184V/I at Week 36 (no K70E present), was resuppressed by the Week 36 retest, and then was lost to follow up

Adverse Events through Week 48: Overall Summary

	% Participants	
	B/F/TAF n=121	DTG + F/TDF n=122
Treatment-emergent AE	89	86
Grade 3 or 4	14	16
Treatment-emergent study drug-related AE	24	27
Grade 3 or 4	5	1
Treatment-emergent serious AE	12	12
Treatment-emergent study drug-related serious AE	1 ^a	0
Treatment-emergent AE leading to discontinuation	1 ^b	0
Death	1 ^c	1 ^c

		% Participants	
Preferred Term		B/F/TAF n=121	DTG + F/TDF n=122
Any treatment-eme	rgent AE	89	86
All-Grade AEs, Terms ≥10%	Upper respiratory tract infection	17	11
	COVID-19	13	11
	Pyrexia	9	12
	ALT increased	7	11
	Nasopharyngitis	11	4
Any study drug-rela	ted AE	24	27
Study drug-related AEs, Terms ≥2%	Weight increased ^a	6	7
	ALT increased	1	5
	Headache	3	2
	Nausea	1	4
	Dizziness	2	2

0/ Doutioinouto

Grade 3 or 4 Laboratory Abnormalities Through Week 48

	70 Participants	
Maximum Treatment-Emergent Toxicity Grade	B/F/TAF n=120	DTG + F/TDF n=121
Any Grade 3 or 4	34	31
Grade 3 or 4 occurring in ≥2% in either group		
ALT increased ^a	20	13
AST increased ^a	13	12
LDL (fasting, increased)	8	2
Amylase increased ^b	5	7
Urine glucose increased ^c	3	2
Total cholesterol (fasting, increased)	3	0
Neutrophils decreased	0	2

% Particinants

In adults with HIV-1/HBV coinfection initiating first-line antiviral therapy, after 48 weeks of treatment:

- ◆ B/F/TAF was noninferior to DTG + F/TDF (95% vs 91%) at achieving HIV-1 RNA < 50 c/mL
- ♦ B/F/TAF was superior to DTG + F/TDF (63% vs 43%) at achieving HBV DNA < 29 IU/mL</p>
- B/F/TAF was associated with higher rates of HBeAg seroconversion compared to DTG + F/TDF (23% vs 11%), with numerically higher but not statistically significant differences between groups in HBsAg loss/seroconversion, HBeAg loss, and ALT normalization
- No participant developed treatment-emergent HIV-1 drug resistance while on B/F/TAF
- B/F/TAF and DTG + F/TDF were well tolerated with few study-drug related AEs or discontinuations

B/F/TAF is a safe and effective treatment for people with HIV-1/HBV coinfection

Thank you to the ALLIANCE Investigators, Study Staff and All Participants			
Americas	East Asia		
GE Crofoot	S-H Cheng	T Li	H Wang
E Koenig	L Dai	H Lu	M Wang
MN Ramgopal	S He	P-L Lu	C-C Wang
L Santiago	C-C Hung	H Nakajima	H Wei
	SI Kim	S Oka	C-J Yang
Europe /	M-P Lee	T Shirasaka	F Zhang
Western Asia	LLi	H-C Tsai	🖌 B Zhu
JG Garcia	Sc	outheast Asia	a
MG Hernandez-Mora	Avihingsanon	HB Ker	CL Leong
V Korten F	P Chetchotisakd	S Khusuwan	SFBS Omar
M Laguno	TS Chow	S Kiertiburanakul	AKA Rahman
L Martin-Carbonero	HH Chua	CS Kumar	W Ratanasuwan
O Tabak	AM Jelani	HG Lee	K Supparatpinyo