Resistance Analysis of Long-Acting Lenacapavir in Highly Treatment-Experienced People with HIV after 26 Weeks of Treatment

Nicolas Margot, Laurie VanderVeen, Vidula Naik, Silvia Chang, PC Parvangada, Ross Martin, Hadas Dvory-Sobol, Martin S. Rhee, and Christian Callebaut

Gilead Sciences, Inc., Foster City, USA

Disclosures

Nicolas Margot is an employee of Gilead Sciences, Inc.

Lenacapavir targets multiple stages of HIV replication cycle

LEN: Long-Acting Inhibitor of HIV-1 Capsid

- ◆ Fully active against HIV with resistance to existing drug classes¹-³
 - NRTI, NNRTI, INSTI, PI
- PK of SC LEN supports its use once every 6 months⁴
- Potent antiviral activity in PWH
 - In Phase 1 proof-of-concept study:
 - Up to 2.3 log₁₀ HIV-1 RNA decline after 9 days of a single-dose monotherapy⁵
 - In Phase 2 study in treatment-naïve PWH (CALIBRATE)
 - High rates of viral suppression (94%) at Week 28 when given SC or PO in combination with F/TAF 6
 - In Phase 2/3 study in viremic, heavily treatment-experienced PWH with MDR (CAPELLA)
 - High rates of viral suppression (81%) at Week 26 in combination with an optimized background regimen ^{7,8}

LEN In Vitro Resistance Characterization

- In vitro resistance selections in MT-2 cells and human PBMCs identified 7 mutations arising at 6 amino acids in capsid¹
 - L56I, M66I, Q67H, K70N, N74S/D, T107N
 - All mutations map to LEN binding site
- Resistance mutations correlated with low replication capacity for all mutants in vitro, except Q67H
- LEN mutations not found in analysis of 1500 HIV clinical isolates²
 - Treatment-naïve or -experienced, with or without
 PI-treatment failure
 - Lack of pre-existing genotypic resistance to LEN

CAPELLA Study Design

Efficacy at Week 26: Randomised Cohort (n=36)

HIV-1 RNA (FDA-Snapshot) and CD4 Responses

Resistance Analyses

Baseline Resistance Analyses

- Confirm Baseline resistance criteria are met
 - Resistance to ≥2 ARVs in ≥ 3 of 4 main ARV classes
 - Monogram Biosciences Assays (45 of 72)
 - Historical resistance reports (27 of 72)
- ◆ Test susceptibility to entry inhibitors² (61 of 72)

Resistance assessment based on Overall Susceptibility Scores (OSS)¹ for each ARV

Post-Baseline Resistance Analyses

- Suboptimal Virologic Response (SVR)
 - Confirmed HIV-1 RNA ≥ 50 c/mL and < 1 log₁₀ ↓ from LEN start (assessed at Week 4)
- Virologic Rebound (VR)
 - After suppression, confirmed HIV-1 RNA ≥ 50 c/mL or >1 log₁₀ ↑ from nadir
- Viremia at Last Visit

Baseline Resistance-Associated Mutations

Main ARV Classes

% Participants with RAMs per ARV class

Mean # RAMs per ARV class

N=72

Baseline Class Resistance

4 Main ARV Classes

Entry Criteria: Resistance to ≥2 ARVs in ≥ 3 of 4 main ARV classes

Resistance Class			Number (%) of Participants			
NRTIa	NNRTI	PI	INSTI	Cohort 1 (n = 36)	Cohort 2 (n = 36)	AII (N = 72)
/	/	/	~	17 (47%)	16 (44%)	33 (46%)
/	/	/		9 (25%)	13 (36%)	22 (31%)
/	/		/	8 (22%)	5 (14%)	13 (18%)
/		~	/	2 6%)	0	2 (3%)
	✓	/	/	0	1 (3%)	1 (1%)
	\		/	0	1 (3%)	1 (1%)

Baseline Resistance to Lenacapavir

Genotypic Analysis

LEN RAMa	L56I	M66I	Q67H	K70N	N74D/S	T107N
# Participant with RAM ^b	0	0	0	0	0	0

- Evaluated with Gag-Pro assay (Monogram)
 - No LEN resistance mutations detected
 - Wild-type LEN phenotypic susceptibility: mean fold-change = 1.0 (0.3–1.7)

a. RAM, resistance associated mutation; mutations identified during in vitro resistance selections (Link JO, et al. Nature 2020;584:614-8).

Data available for 62 participants

c. Fold change from wild-type control

Post-Baseline Resistance Analysis

Capella

Through Week 26

Study Phase/Treatment	Cohort 1A (n = 24)	Cohort 1B (n = 12)	AII (N = 36)
Functional Monotherapy	Oral LEN + Failing Regimen	Placebo + Failing Regimen	N/A
Maintenance Therapy	LEN ¹ + OBR	LEN ² + OBR	LEN + OBR

Resistance Categories	Cohort 1A (n = 24)	Cohort 1B (n = 12)	AII (N = 36)
Resistance Analysis Population (RAP)	6 (25%)	5 (42%)	11 (31%)
With CA-R Emerging	1 (4%)	3 (25%)	4 (11%)
M66I	1 (4%)	3 (25%)	4 (11%)
Others ³	1 (4%)	2 (17%)	3 (8%)
No CA-R Emergence	5 (21%)	2 (17%)	7 (19%)

- ♦ 11 of 36 participants were analyzed for resistance
- 4 of 36 participants had CA resistance emerging by week 26

Viral Response and Resistance

Drugs in **red** are not active (OSS = 0); drugs in **orange** are partially active (OSS = 0.5); drugs in **black** are fully active (OSS = 1); 3TC = lamivudine; c = cobicistat boosting; CA = Capsid protein; DRV = darunavir; DTG = dolutegravir; FC = fold-change compared to wild-type control; FTC = emtricitabine; IBA = ibalizumab; LEN = lenacapavir; LLOQ = lower limit of quantification; MVC = maraviroc; O = oral LEN; OBR = optimized background regimen; OSS = overall susceptibility score; P = placebo; PK = pharmacokinetics; r = ritonavir boosting; T20 = enfuvirtide; TAF = tenofovir alafenamide; TDF = tenofovir disoproxil fumarate; L: SC LEN injection

Viral Response and Resistance

Drugs in **red** are not active (OSS = 0); drugs in **orange** are partially active (OSS = 0.5); drugs in **black** are fully active (OSS = 1); 3TC = lamivudine; c = cobicistat boosting; CA = Capsid protein; DRV = darunavir; DTG = dolutegravir; FC = fold-change compared to wild-type control; FTC = emtricitabine; IBA = ibalizumab; LEN = lenacapavir; LLOQ = lower limit of quantification; MVC = maraviroc; O = oral LEN; OBR = optimized background regimen; OSS = overall susceptibility score; P = placebo; PK = pharmacokinetics; r = ritonavir boosting; T20 = enfuvirtide; TAF = tenofovir alafenamide; TDF = tenofovir disoproxil fumarate; LSC LEN injection

Viral Response and Resistance

Drugs in **red** are not active (OSS = 0); drugs in **orange** are partially active (OSS = 0.5); drugs in **black** are fully active (OSS = 1); 3TC = lamivudine; c = cobicistat boosting; CA = Capsid protein; DRV = darunavir; DTG = dolutegravir; FC = fold-change compared to wild-type control; FTC = emtricitabine; IBA = ibalizumab; LEN = lenacapavir; LLOQ = lower limit of quantification; MVC = maraviroc; O = oral LEN; OBR = optimized background regimen; OSS = overall susceptibility score; P = placebo; PK = pharmacokinetics; r = ritonavir boosting; T20 = enfuvirtide; TAF = tenofovir alafenamide; TDF = tenofovir disoproxil fumarate; LSC LEN injection

Viral Response and Resistance

Drugs in **red** are not active (OSS = 0); drugs in **orange** are partially active (OSS = 0.5); drugs in **black** are fully active (OSS = 1); 3TC = lamivudine; c = cobicistat boosting; CA = Capsid protein; DRV = darunavir; DTG = dolutegravir; FC = fold-change compared to wild-type control; FTC = emtricitabine; IBA = ibalizumab; LEN = lenacapavir; LLOQ = lower limit of quantification; MVC = maraviroc; O = oral LEN; OBR = optimized background regimen; OSS = overall susceptibility score; P = placebo; PK = pharmacokinetics; r = ritonavir boosting; T20 = enfuvirtide; TAF = tenofovir alafenamide; TDF = tenofovir disoproxil fumarate; L: SC LEN injection

Summary of Participants with CA Resistance

Part.	1 st Visit with CA-R	CA RAMs	LEN FCa	# of Fully Active Drugs	Comments
1	Week 26	M66I	138	3	Effective LEN monotherapy (OBR adherence issue)
2	Week 10	M66I, N74D, A105T	>1445	0	Effective LEN monotherapy (no active ARVs in OBR)
3	Week 4	M66M/I	46	0	Effective LEN monotherapy (no active ARVs in OBR)
4	Week 4	M66M/I, K70K/S	ND	2	Effective LEN monotherapy (OBR adherence issue)

- Emergence of M66I (± others) in all 4 participants with CA resistance
 - LEN susceptibility ranging from 46 to >1445-fold above wild-type control
- Effective LEN monotherapy at the time of CA-R emergence
 - Inadequate OBR drug levels
 - Lack of active agents in OBR

Conclusions

- In heavily treatment-experienced PWH with multidrug resistance
 - LEN + OBR led to high rates of virologic suppression (81%) and increases in CD4 cells by Week 26
 - LEN was well tolerated with no AEs leading to discontinuation
- Overall, the level of baseline resistance to the main ARV classes was high and consistent with the enrollment criteria defined in concert with FDA
- Post-baseline Cohort 1: 4 of 36 participants with emergence of LEN-associated mutations
 - no emerging resistance to OBR
- Viral rebound cases associated with effective LEN monotherapy at the time of resistance emergence

Acknowledgments

We are grateful to all the individuals who participated in this trial, their partners, and families

Participating study investigators and their study teams:

Canada J Brunetto, B Trottier; Dominican Republic E Koenig; France J-M Molina, S Ronot-Bregigeon, Y Yazdanpanah; Germany H-J Stellbrink; Italy A Antinori, A Castagna, F Castelli; Japan T Shirasaka, Y Yokomaku; South Africa M Rassool; Spain J Mallolas; Taiwan C-C Hung; Thailand A Avihingsanon, P Chetchotisakd, K Siripassorn, W Ratanasuwan; United States DS Berger, M Berhe, C Brinson, CM Creticos, GE Crofoot, E DeJesus, D Hagins, T Hodge, K Lichtenstein, JP McGowan, O Ogbuagu, O Osiyemi, GJ Richmond, MN Ramgopal, PJ Ruane, W Sanchez, S Segal-Maurer, J Sims, GI Sinclair, DA Wheeler, A Wiznia, K Workowski, C Zurawski

Monogram Biosciences for resistance analyses

Seq-IT for sequence analyses

This study was funded by Gilead Sciences, Inc.