Safety and Efficacy of Sofosbuvir/Velpatasvir for the Treatment of Chronic Hepatitis C Infection in Children and Adolescents Aged 3 to 17 Years Old Through 24 Weeks Posttreatment Etienne M. Sokal,¹ Kathleen B. Schwarz,² Philip Rosenthal,³ Gabriella Verucchi,⁴ Chuan-Hao Lin,⁵ William F. Balistreri,⁶ Jessica Wen,⁷ Suzanne Whitworth,⁸ Daniel H. Leung,⁹ Sanjay Bansal,¹⁰ Wikrom Karnsakul,² Alessandra Mangia,¹¹

Girish S. Rao,¹² Jiang Shao,¹³ Chia-Hsiang Hsueh,¹³ Bandita Parhy,¹³ Anuj Gaggar,¹³ Kathryn Kersey,¹³ Michael R. Narkewicz,¹⁴ Regino P. Gonzalez-Peralta,¹⁵ Karen F. Murray,¹⁶ Rene Romero,¹⁷ Maureen M. Jonas¹⁸ ¹Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Bruxelles, Belgique; ²Johns Hopkins University School of Medicine, Baltimore, MD; ³University of California San Francisco; ⁴Università di Bologna, Italy; ⁶Children's Hospital Los Angeles, Università di Bologna, Italy; ¹⁶Children's Hospital of Philadelphia, PA; ⁸Cook Children's Health Care System, Fort Worth, TX; ⁹Texas Children's Hospital, Baylor College of Medicine, Houston, TX; ¹⁰King's College Hospital, London, UK; ¹¹Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy; ¹²Riley Hospital for Children at Indiana University Health, Indianapolis, IN; ¹³Gilead Sciences, Inc., Foster City, CA; ¹⁴Children's Hospital Colorado, University of Colorado School of Medicine, Aurora; ¹⁵AdventHealth for Children, AdventHealth for Children's Hospital, Boston, MA

Introduction

- Globally, 3.3 million adolescents and children have been estimated to have chronic hepatitis C virus (HCV) infection¹
- Prevalence of HCV in children and adolescents in the USA is increasing in association with the opioid epidemic²
- Treating pediatric patients is important to achieve the WHO goal of global elimination of HCV in 2030
- The present study (NCT03022981) was conducted to evaluate the safety and efficacy of sofosbuvir (SOF)/velpatasvir (VEL) in patients aged 3–17 y with chronic HCV infection through 24 wk posttreatment

Objectives

- Primary:
- To assess the safety and tolerability of SOF/VEL in pediatric patients
- To evaluate the pharmacokinetics (PK) of SOF/VEL in pediatric patients relative to adults
- Secondary: to assess the efficacy of SOF/VEL for 12 wk in pediatric patients with chronic HCV

Methods

Svr12 Svr2 Svr2

- Open-label study in TN or interferon (IFN)–experienced (± ribavirin [RBV] ± a protease inhibitor) patients aged 3–<18 y with chronic HCV infection of any GT
- 3 sequential age groups
- Conducted at 28 sites in Belgium, Italy, UK, and USA
- ◆ PK lead-in phase in ≥17 patients in each age group to confirm the dose to be studied prior to expansion of treatment phase
- Doses and formulations of SOF/VEL:
- 12–17 y: 400/100 mg given as 1 x 400/100-mg tablet or 2 x 200/50-mg tablets
- 6–11 y: 200/50 mg given as 1 x 200/50-mg tablet or 4 x 50/12.5-mg oral granules packets
- 3–5 y: ≥17 kg—200/50 mg given as 4 x 50/12.5-mg oral granules packets;
<17 kg—150/37.5 mg given as 3 x 50/12.5-mg oral granules packets

Assessments

- Efficacy was assessed by HCV RNA at each visit analyzed by COBAS[®] AmpliPrep/COBAS[®] TaqMan[®] HCV Quantitative Test, v2.0 (Roche Molecular Diagnostics, Pleasanton, CA)
- Key efficacy endpoint: SVR12 (HCV RNA < lower limit of quantitation [<15 IU/mL] at posttreatment Week [PTW] 12)
- Maintenance of SVR assessed at PTW 24 (SVR24)
- Nonstructural protein 5A (NS5A) and 5B (NS5B) resistance-associated substitutions (RASs) were identified using deep sequencing, with a 15% cutoff at baseline for patients with a virologic outcome and at virologic failure
- Safety:
- Adverse events (AEs) and laboratory tests through PTW 4
 Weight, height, and body mass index (BMI) through PTW 24, and radiographic bone age via wrist X-ray at baseline and PTW 24
- Weight, height, and BMI percentile scores were calculated using 2000 Centers for Disease Control and Prevention reference charts³
- Tanner stages of development for pubic hair (girls and boys), breasts (girls), and genitalia (boys)^{4,5} were assessed at each visit unless stage 5 had been reached at preceding visit

- PK:
- Steady-state exposures of SOF, its primary metabolite GS-331007, and VEL were determined on Day 7 in the PK lead-in phase in each age group
- Population-PK modeling and simulations were conducted using intensive and sparse PK sampling data from all study patients to compare exposures with adults, and to develop a weight-based dosing regimen

Results

Demographics and Baseline Characteristics

	3–5 y n=41	6–11 y n=73	12–17 y n=102
Median age, y (range)	4 (3–5)	8 (6–11)	15 (12–17)
Female, n (%)	24 (59)	38 (52)	52 (51)
White, n (%)	32 (78)	66 (90)	74 (73)
Mean weight, kg (range)	19 (13–35)	30 (18–78)	61 (22–147)
Mean height, cm (range)	106 (86–126)	129 (107–159)	162 (129–188)
Mean BMI, kg/m ² (range)	17.0 (13.9–22.0)	17.5 (12.8–30.9)	22.7 (12.9–48.9)
HCV GT, n (%)			
1	32 (78)	56 (77)	77 (75)
2	6 (15)	2 (3)	5 (5)
3	2 (5)	11 (15)	12 (12)
4	1 (2)	4 (5)	2 (2)
6	0	0	6 (6)
Baseline HCV RNA ≥800,00 IU/mL, n (%)	20 (49)	35 (48)	59 (58)
TE, n (%)*	0	4 (5)	22 (22)
Cirrhosis, n (%)	0	0	0
Vertical transmission (infected mother), n (%)	40 (98)	69 (95)	91 (89)

*Pegylated (PEG)–IFN (n=3), PEG-IFN+RBV (n=22), or PEG-IFN+RBV+telaprevir (n=1).

SVR12: SOF/VEL for 12 Weeks in Pediatric Patients

Overall virologic failure rate: 1% (2/216)

- TN girl aged 10 y with HCV GT 1a had a nonresponse after 8 wk of treatment and discontinued SOF/VEL
- TN girl aged 17 y with HCV GT 1a became pregnant, discontinued treatment at Week 4, and relapsed at PTW 4
- No children aged 3–5 y had virologic failure
- All patients who achieved SVR12 also achieved SVR24

Virologic Resistance

*N=patients with baseline deep-sequencing result

Prevalence of Baseline RASs			
n/N(%)*	Baseline NS5A RAS	Baseline NS5B RAS	
3—5 у	6/33 (18)	1/30 (3)	
6—11 y	7/68 (10)	0/66 (0)	
12–17 y	16/98 (16)	5/97 (5)	

All patients with baseline RASs achieved SVR12

Virologic Resistance at Virologic Failure

- Patient aged 10 y with nonresponse at Week 8 had NS5A RAS L31V emerge
- Patient aged 17 y who relapsed did not have any RASs emerge

(Overall Safety				
			3–5 y n=41	6–11 y n=73	12–17 y n=102
		Any AE	32 (78)	59 (81)	77 (75)
	Overall	Grade 3–4 AE	0	1 (1)	2 (2)
	Safety	Serious AE	0	2 (3)	2 (2)
		Treatment discontinuation due to AE	1 (2)	2 (3)	0
	Laboratory Abnormalities	Grades 3–4	1 (2)	0	5 (5)

- A girl aged 6 y had a Grade 3 serious AE of auditory hallucinations assessed by the investigator as treatment related, which resulted in treatment discontinuation
- 3 patients had serious AEs considered unrelated to treatment, which resolved without treatment interruption
- 2 additional patients had AEs that were considered treatment related and led to treatment discontinuation: a girl aged 8 y had a Grade 1 AE of spitting up study drug, and a boy aged 3 y had Grade 1 AEs of decreased appetite, increased hyperactivity, and spitting up study drug, and a Grade 2 AE of irritability

Adverse Events in >10% of Patients in ≥1 Age Group			
Patients, n (%)	3–5 y n=41	6–11 y n=73	12–17 y n=102
Headache	2 (5)	11 (15)	30 (29)
Vomiting	11 (27)	12 (16)	9 (9)
Fatigue	5 (12)	9 (12)	22 (22)
Nausea	0	5 (7)	17 (17)
Cough	6 (15)	11 (15)	10 (10)
Pyrexia	6 (15)	8 (11)	10 (10)
Rhinorrhea	6 (15)	4 (5)	4 (4)
Nasal congestion	5 (12)	4 (5)	6 (6)
Diarrhea	5 (12)	6 (8)	7 (7)
Abdominal pain	2 (5)	9 (12)	6 (6)

 AE profile was consistent with that in adults in the Phase 3 SOF/VEL clinical trials

Weight-Based Dosing

FDC. fixed-dose combinatio

Body Weight	SOF/VEL FDC Daily Dose
≥30 kg	400/100 mg
17–<30 kg	200/50 mg
<17 kg	150/37.5 mg

- SOF/VEL doses used in the study resulted in exposures in patients aged 3–17 y comparable to those observed in adults
- Population PK simulations using SOF, GS-331007, and VEL data from clinical studies in pediatric and adult patients support weight-based dosing for pediatric patients aged ≥3 y

Gilead Sciences, Inc. 333 Lakeside Drive Foster City, CA 94404 800-445-3235

 No effects on growth or development were observed in girls or boys aged 3–17 y

Conclusions

- SOF/VEL for 12 wk resulted in SVR12 rate of 92% overall in pediatric patients aged 3–17 y regardless of HCV GT, prior treatment experience, or presence of compensated cirrhosis
 Virologic failure rate was 1%
- SOF/VEL was well tolerated
- Population-PK simulations support weight-based dosing in this population
- Low-dose FDC tablets and granule formulations of SOF/VEL have been developed for children aged <12 y
- SOF/VEL for 12 wk currently is approved in the USA for patients with chronic HCV infection aged ≥6 y or weighing ≥17 kg
- Regulatory submissions for children aged 3–5 y are pending

References: 1. Schmelzer J, et al. Lancet Gastroenterol Hepatol 2020;5:374-92; 2. Koneru A, et al. MMWR Morb Mortal Wkly Rep 2016;65:705-10; 3. US Dept of Health & Human Services. CDC Growth Charts; 12/7/16; 4. Marshall WA, Turner JM. Arch Dis Childhood 1969;44:291-303; 5. Marshall WA, Turner JM. Arch Dis Childhood 1970;45:13-23.

Acknowledgments: We extend our thanks to the patients and their families, and all participating investigators: Belgium: E. Sokal;
 Italy: G. Indolfi, A. Mangia, G. Verucchi; UK: S. Bansal, S. Davison; USA: R. Arnon, W. Balistreri, J. Daniel, C. Espinosa, L. Gillis,
 R. Gonzalez-Peralta, J. Honegger, C. Jolley, M. Jonas, W. Karnsakul, D. Leung, C.-H. Lin, P. Mohan, K. Murray, M. Narkewicz, R. Quiros,
 G. Rao, R. Romero, P. Rosenthal, K. Schwarz, J. Wen, S. Whitworth. This study was funded by Gilead Sciences, Inc.
 Disclosures: E.M. Sokal: Promethera; K.B. Schwarz: Gilead, BMS, Roche/Genentech, Up to Date; P. Rosenthal: Gilead, AbbVie,
 Albireo, Arrowhead, Audentes, Mirum, MSD, Retrophin, Roche; G. Verucchi and J. Wen: Gilead, AbbVie, Alexion; C.-H. Lin: Gilead,
 Mirum; J. Shao, C.-H. Hsueh, B. Parhy, A. Gaggar, and K. Kersey: Gilead; S. Bansal, S. Whitworth, and G.S. Rao: nothing to
 disclose; W.F. Balistreri: Gilead, AbbVie, Alexion, MSD, Otsuka; D.H. Leung: Gilead, AbbVie, Mirum, MSD; W. Karnsakul and
 K.F. Murray: Gilead, Albireo; A. Mangia: Gilead, Intercept, MSD; M.R. Narkewicz: Gilead, AbbVie, Vertex; R.P. Gonzalez-Peralta:
 Gilead, AbbVie, Albireo, Alexion, MSD; R. Romero: Gilead, MSD; and M.M. Jonas: Gilead, AbbVie, Echosens, MSD, Roche.