# The REDPINE Study: Efficacy and Safety of Remdesivir in People With Moderately and Severely Reduced Kidney Function Hospitalised for COVID-19 Pneumonia

Jose Ramon Santos,<sup>1,\*</sup> Jason D. Goldman,<sup>2</sup> Katherine R. Tuttle,<sup>3</sup> J. Pedro Teixeira,<sup>4</sup> Yiannis Koullias,<sup>5</sup> Joe Llewellyn,<sup>5</sup> Yang Zhao,<sup>5</sup> Hailin Huang,<sup>5</sup> Robert H. Hyland,<sup>5</sup> Anu Osinusi,<sup>5</sup> Rita Humeniuk,<sup>5</sup> Henry Hulter,<sup>6</sup> Robert L. Gottlieb,<sup>7</sup> Dahlene N. Fusco,<sup>8</sup> Rita Birne,<sup>9</sup> Fernando F. Stancampiano,<sup>10</sup> Claudia R. Libertin,<sup>10</sup> Mark J. McPhail,<sup>11</sup> Meghan Sise<sup>12</sup>

<sup>1</sup>Hospital Universitari Germans Trias i Pujol, Badalona, Spain; <sup>2</sup>Swedish Medical Center, Seattle, WA, USA; <sup>3</sup>Providence Inland Northwest Health, Spokane, WA, USA; <sup>4</sup>University of New Mexico Hospital, Albuquerque, NM, USA; <sup>5</sup>Gilead Sciences, Inc., Foster City, CA, USA; <sup>6</sup>University of California San Francisco, San Francisco, CA, USA; <sup>7</sup>Baylor University Medical Center and Baylor Scott & White Research Institute, Dallas, TX, USA; <sup>8</sup>Tulane University, New Orleans, LA, USA; <sup>9</sup>Centro Hospitalar de Lisboa Ocidental EPE, Lisbon, Portugal; <sup>10</sup>Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA; <sup>11</sup>King's College Hospital, London, UK; <sup>12</sup>Massachusetts General Hospital, Boston, MA, USA.

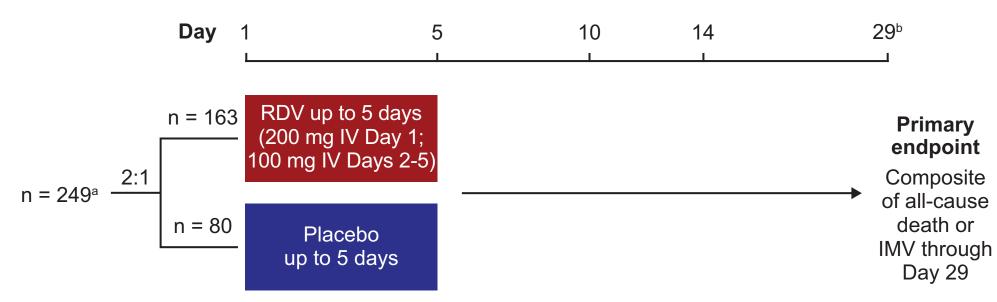
\*Presenting author.

#### Introduction

- Kidney disease is a major risk factor for mortality from COVID-19<sup>1</sup>
  - COVID-19—associated acute kidney injury (AKI) has been shown to correlate with higher mortality and long-term loss of renal function<sup>2</sup>
  - Increased COVID-19 mortality risk has been observed in select populations receiving renal replacement therapy (RRT) and chronic dialysis<sup>3</sup>
  - There are no conventional antiviral treatment options for hospitalised individuals with severely reduced kidney function due to chronic kidney disease (CKD; estimated glomerular filtration rate [eGFR] <30 mL/min/1.73 m²), end-stage kidney disease (ESKD), or AKI</li>
- Remdesivir (RDV; Veklury®) is a broad-spectrum antiviral drug approved for individuals with COVID-19 who have an eGFR ≥30 mL/min/1.73 m² and are either hospitalised or not hospitalised but at risk for progression to severe disease⁴
- When RDV was initially approved for the treatment of COVID-19, the pharmacokinetics (PK)
  of RDV and the safety of its metabolites and its sulfobutylether-β-cyclodextrin sodium (SBECD)
  excipient had yet to be established in those with low eGFR
- Pending PK and safety data in moderate-to-severe renal insufficiency, it was initially recommended that RDV only be used in those with eGFR <30 mL/min/1.73 m² if the potential benefits outweighed the potential risks<sup>5</sup>

# Objective

 To evaluate the efficacy, safety, and PK of RDV in participants hospitalised for COVID-19 pneumonia with moderately and severely reduced kidney function (eGFR <30 mL/min/1.73 m²) or AKI


### Methods

- REDPINE was a Phase 3, randomised, double-blind, placebo-controlled, parallel-group, multicentre study conducted internationally at 55 centres across 5 countries (Brazil, Portugal, Spain, the United Kingdom, and the United States; EudraCT Registration Number: 2020-005416-22; ClinicalTrials.gov Identifier: NCT04745351)
- Eligible participants had confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, were hospitalised with severe COVID-19, were aged ≥12 years, weighed ≥40 kg, had oxygen saturation ≤94% on room air or required oxygen supplementation, and had eGFR <30 mL/min/1.73 m² due to either CKD or AKI</p>
  - Kidney transplant recipients with reduced allograft function were eligible
  - Individuals who required invasive or noninvasive mechanical ventilation, extracorporeal membrane oxygenation, or RRT for AKI were excluded

Participants were randomly assigned (2:1) to receive intravenous RDV (200 mg on Day 1 followed by 100 mg once daily on Days 2-5) or placebo to match, in addition to standard-of-care therapy (Figure 1)

- Randomisation was stratified by chronic dialysis requirement, high-flow oxygen requirement, and region (United States vs ex–United States)
- Enrolment was halted after 249 participants were randomised because of ongoing challenges with recruitment
  - Low enrolment was due in part to loss of clinical equipoise at many study centres, such that patients were often receiving treatment with RDV outside the scope of the trial

#### Figure 1. Study Design

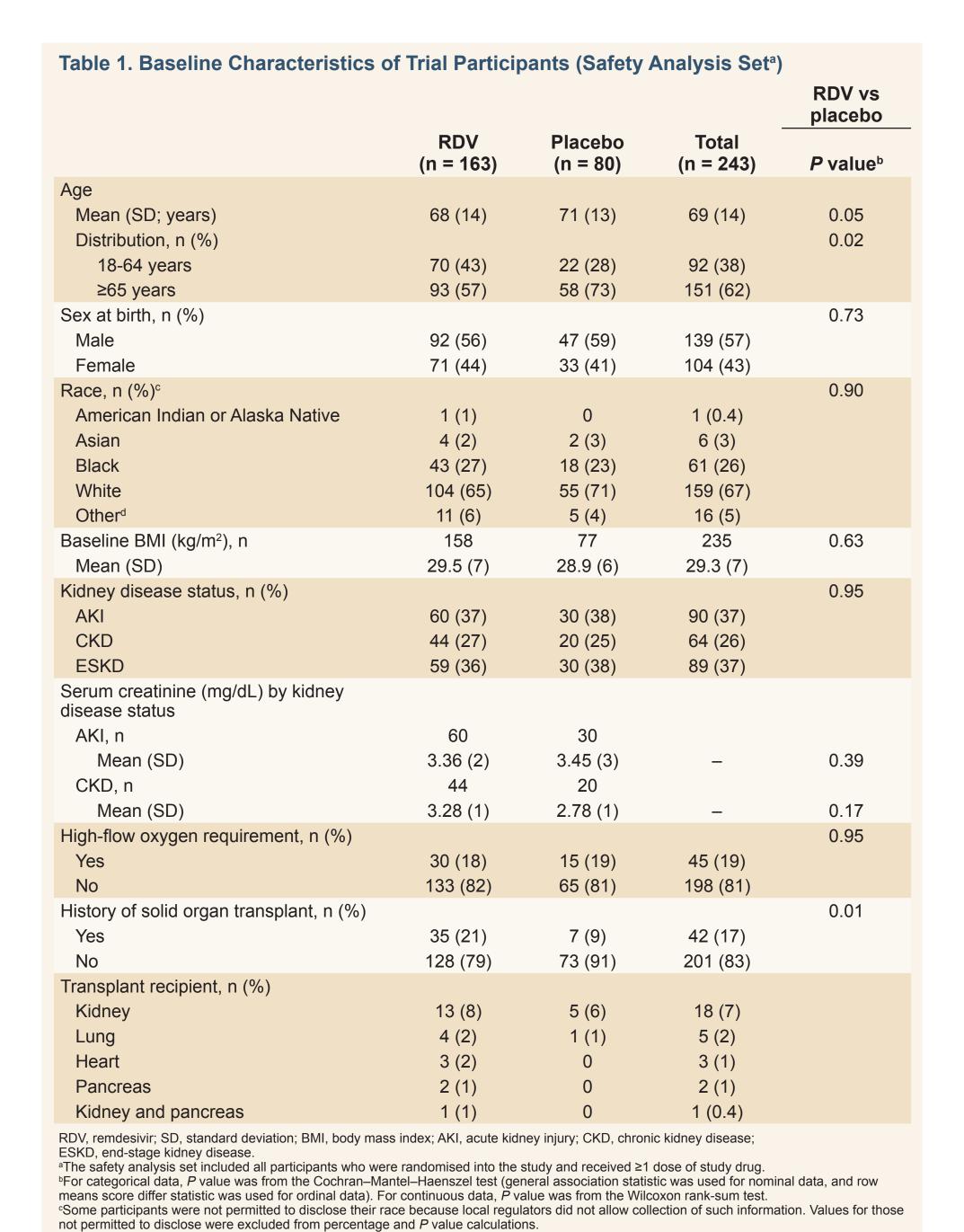


RDV, remdesivir; IV, intravenous; IMV, invasive mechanical ventilation.

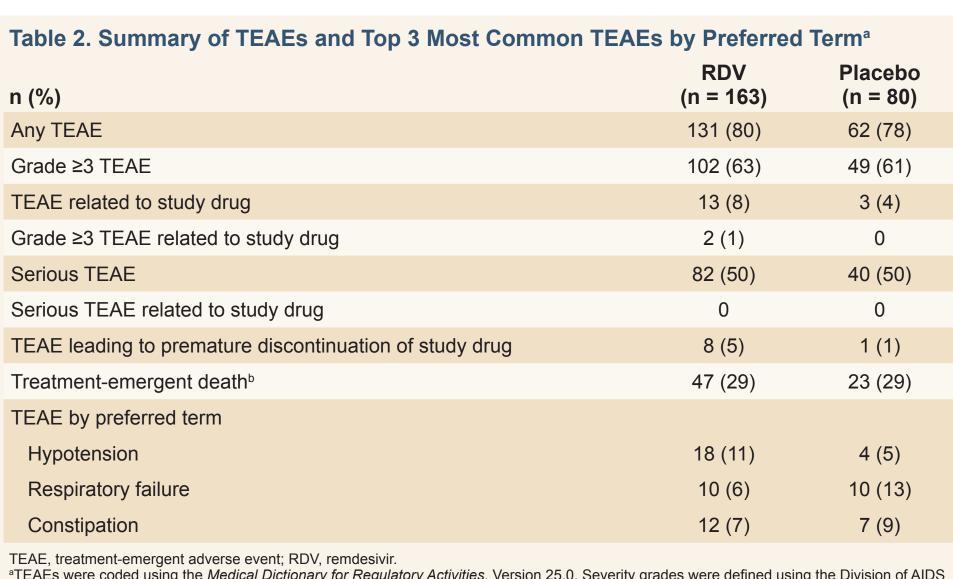
<sup>a</sup>249 participants were randomised, but 6 were not treated.

<sup>b</sup>If a participant was discharged prior to Day 29, a phone follow-up was completed on Days 29 and 60.

- The primary endpoint (composite of all-cause mortality or invasive mechanical ventilation [IMV] through Day 29) was analysed with a stratified log-rank test using the randomisation strata; the hazard ratio (HR) and 95% confidence interval (CI) were estimated using a Cox model with stratification factors as covariates
- Adverse events (AEs) and serious AEs (SAEs) were collected for all participants from
   Day 1 to 29 and summarised using descriptive statistics
  - Treatment-emergent AEs (TEAEs), serious TEAEs, and TEAEs leading to discontinuation were defined as AE/SAEs occurring on or after the first dose date up to the last dose date plus 30 days
  - Following hospital discharge, events were collected by phone on Days 29 and 60
- PK parameters for RDV, its renally eliminated metabolite (GS-441524), and SBECD were determined using liquid chromatography-tandem mass spectrometry


# Results

#### **Participants**


- Of the 258 participants screened, 243 were randomised and treated (RDV, n = 163; placebo, n = 80)
- Demographic and select baseline disease characteristics are displayed in **Table 1** 
  - Although eligible per the protocol, no participants aged 12 to 17 years were enrolled
  - Despite randomisation, placebo-enrolled patients were more often ≥65 years of age
    At baseline, 89 (37%) participants had ESKD requiring chronic dialysis (RDV, 59 [36%];
  - placebo, 30 [38%])Most participants (198 [81%]) had no high-flow oxygen requirements, with no difference
  - between groups (P = 0.95)
  - Proportionally, more solid-organ transplant recipients were randomly assigned to the RDV group (RDV, 35 [21%]; placebo, 7 [9%])

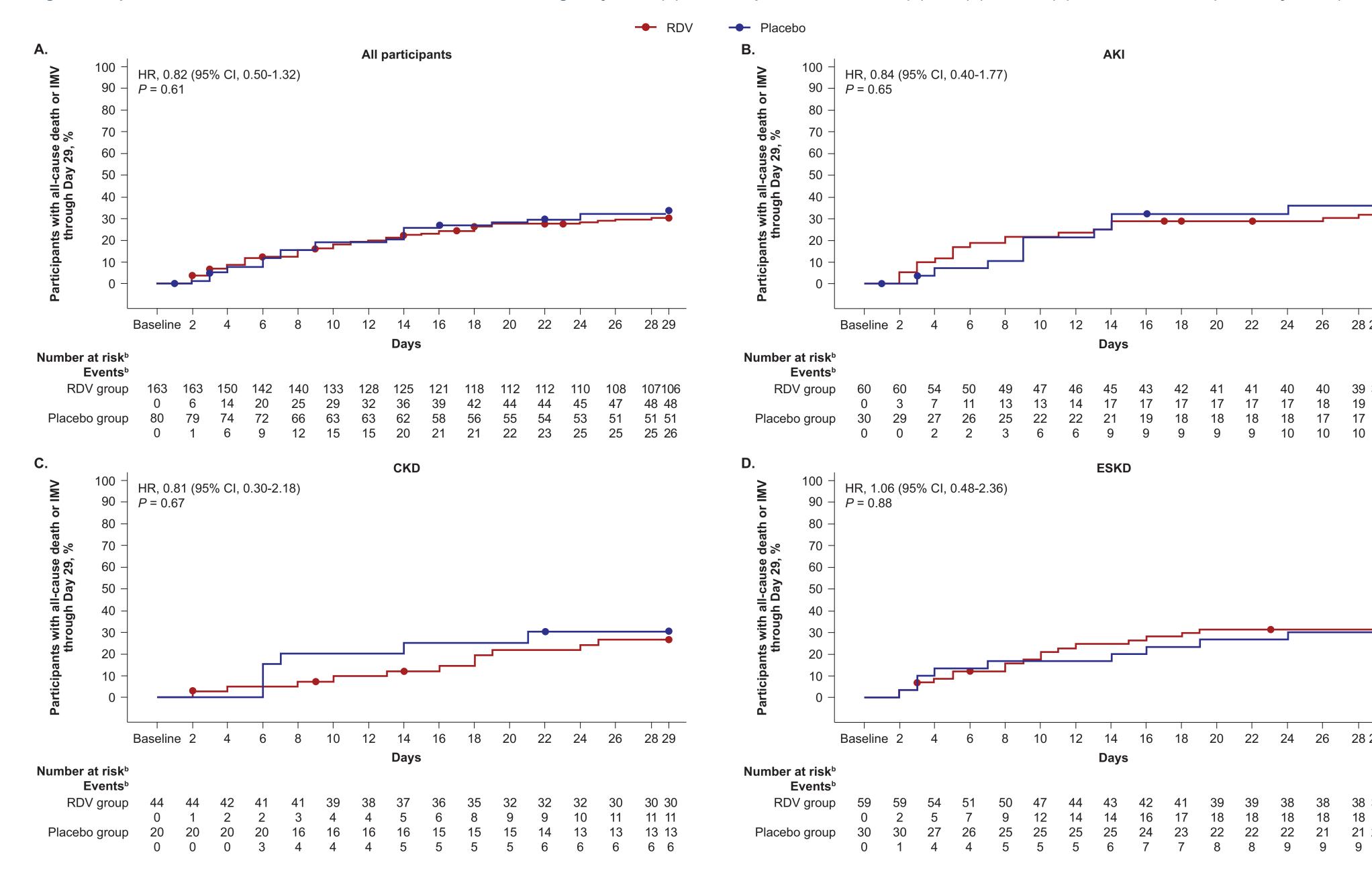
#### Efficacy

- Kaplan–Meier estimates for all randomised and treated participants with all-cause death or IMV by Day 29 were 30% for the RDV group and 34% for the placebo group (HR, 0.82; 95% CI, 0.50-1.32; P = 0.61; Figure 2A)
- All-cause death by Day 29 occurred in 41 (25%) and 23 (29%) participants in the RDV and placebo groups, respectively (HR, 0.83; 95% CI, 0.50-1.39; P = 0.39)
- There were no statistically significant differences observed for the primary efficacy endpoint between the RDV and placebo groups by kidney disease status (Figure 2B-2D)



Includes participants who were Native Hawaiian or Pacific Islander, other, or not permitted to disclose race.




TEAE, treatment-emergent adverse event; RDV, remdesivir.

<sup>a</sup>TEAEs were coded using the *Medical Dictionary for Regulatory Activities*, Version 25.0. Severity grades were defined using the Division of AIDS Toxicity Grading Scale, Version 2.1 (July 2017).

<sup>b</sup>Refers to deaths that occurred between the first and last dose date plus 30 days (inclusive).

Table 3. Proportion of Participants With Baseline AKI or CKD Who Had Worsening AKI, **Need for RRT, or Death by Day 29 (Full Analysis Set)** n (%)<sup>a</sup> **RDV** Placebo P value New or progressive AKI in participants with AKI at baseline, n 30 60 0.32 AKI Stage 2 or 3, RRT, or death by Day 29 20 (33) 12 (40) AKI Stage 2 AKI Stage 3 5 (8) 2 (7) 17 (28) 11 (37) Death 20 CKD at baseline, n AKI Stage 2 or 3, RRT, or death by Day 29 15 (34) 6 (30) 0.81 AKI Stage 2 3 (15) AKI Stage 3 8 (18) 2 (10) AKI Stage 3 - death 1 (2) 1 (5) AKI Stage 3 - no death 7 (16) 2 (10) RRT 3 (7) Death 5 (25) 8 (18) AKI, acute kidney injury; CKD, chronic kidney disease; RRT, renal replacement therapy; RDV, remdesivir. <sup>a</sup>Outcomes of AKI Stage 2 or 3, RRT, and death are not mutually exclusive.

Figure 2. Kaplan-Meier Estimate of Time to All-cause Death or IMV Through Day 29 for (A) All Participants or Those With (B) AKI, (C) CKD, or (D) ESKD at Baseline<sup>a</sup> (Full Analysis Set)



IMV, invasive mechanical ventilation; AKI, acute kidney injury; CKD, chronic kidney disease; ESKD, end-stage kidney disease; RDV, remdesivir; HR, hazard ratio; CI, confidence interval. 
<sup>a</sup>Participants who did not initiate IMV or die by Day 29 were censored on their last study day or Day 29, whichever was earlier.

<sup>b</sup>Represents the number of participants remaining at the beginning of the interval.

#### Safety

- Overall, 193 (79%) participants had ≥1 TEAE, including 131 (80%) in the RDV group and
   62 (78%) in the placebo group (**Table 2**)
- The most frequently reported TEAE (n [%]) in the RDV group was hypotension (18 [11%]), whereas respiratory failure (10 [13%]) was most common in the placebo group

 Serious TEAEs were reported in 82 (50%) and 40 (50%) participants in the RDV and placebo groups, respectively; none were considered related to the study drug

- Overall, 9 (4%) participants had TEAEs leading to discontinuation (RDV, 8 [5%]; placebo, 1 [1%])
- Similar proportions of participants treated with RDV or placebo went on to have AKI Stage 2 or 3, RRT, or death, irrespective of baseline AKI status (RDV, 20/60 [33%]; placebo, 12/30 [40%]; P = 0.32) or CKD (RDV, 15/44 [34%]; placebo, 6/20 [30%]; P = 0.81; Table 3)

#### PK

- Baseline eGFR was highly correlated with increasing exposure of the renally eliminated metabolite, GS-441524; in those with kidney failure (5th percentile eGFR of 2.54 mL/min/1.73 m²), median GS-441524 area under the concentration-time curve over the dosing interval (AUC<sub>tau</sub>) increased up to 5-fold compared with participants with normal renal function<sup>6</sup>
- SBECD PK exposures (AUC<sub>tau</sub>) increased up to 26-fold in participants with kidney failure compared with participants with normal renal function
- RDV plasma exposure was not affected by renal function<sup>6</sup>

# Conclusions

- There was no significant difference in all-cause death or IMV by Day 29 between the RDV and placebo groups; however, the study was underpowered for efficacy due to insufficient enrolment
- RDV dosed at 200 mg on Day 1 followed by 100 mg once daily up to Day 5 was generally safe and well tolerated
- No new safety signals were identified with increasing plasma exposures of the predominant metabolite (GS-441524) or the excipient SBECD
- No dose adjustment is recommended in patients who have an eGFR <30 mL/min/1.73 m², regardless of the need for dialysis</li>

References: 1. ERA-EDTA Council, ERACODA Working Group. *Nephrol Dial Transplant*. 2021;36(1):87-94. 2. Tan BWL, et al. *EClinicalMedicine*. 2023;55:101724. 3. Jager KJ, et al. *Kidney Int*. 2020;98(6):1540-1548. 4. Veklury (remdesivir) injection, for intravenous use [package insert]. Gilead Sciences, Inc.; 2022. 5. Gilead Sciences, Inc. Fact sheet for health care providers emergency use authorization (EUA) of Veklury (remdesivir). Accessed 15 February 2023. https://www.samc.com/assets/documents/covid19/nursing/remdesivir\_eua-hcp-fact-sheet-8-2020.pdf. 6. Humeniuk R, et al. Poster presented at: Conference on Retroviruses and Opportunistic Infections (CROI); 19-22 February 2023; Seattle, WA. Poster P514.

Acknowledgements: This study is funded by Gilead Sciences, Inc., and

Disclosures: JRS received research funding, consulting fees, and lecture sponsorships from and served on advisory boards for Abbott, Boehringer Ingelheim, Gilead Sciences, Inc., GSK, Janssen-Cilag, Bristol Myers Squibb, ViiV Healthcare, Merck Sharp & Dohme, and Pfizer. JDG consulted for Gilead Sciences, Inc., Eli Lilly, GSK, and Karius; received research support or grants from Gilead Sciences, Inc., Eli Lilly, Regeneron, and Merck Sharp & Dohme (Biomedical Advanced Research and Development Authority); and received nonfinancial support from Adaptive Biotechnologies, Monogram Biosciences, and Labcorp (outside of this study). JPT is a consultant for Outset Medical and owns stock and/or stock options in Novo Nordisk A/S. YK, JL, YZ, H Huang, RHH, AO, and RH are stockholders and employees of Gilead Sciences, Inc. H Hulter received consulting fees from Gilead Sciences, Inc. RLG served as a consultant for AbbVie, Gilead Sciences, Inc., Johnson & Johnson, Roivant Pharmaceuticals, Roche Pharmaceuticals, GSK, and Eli Lilly; is a national coordinating PI for Johnson & Johnson; served on an academic steering committee for Roivant Pharmaceuticals; received a gift in kind to Baylor Scott & White Research Institute to facilitate NCT03383419 from Gilead Sciences, Inc.; owns de minimis stock in AbCellera Biologics; and served as a speaker for Pfizer, outside the scope of COVID-19; and served as a site PI for clinical trials with Gilead Sciences, Inc., Regeneron, and MetroBiotech, LLC. RB served on a scientific advisory board for AstraZeneca, Bayer, Boehringer Ingelheim, Merck Sharp & Dohme, and Mundipharma; and served as a speaker for AstraZeneca, Bayer, Merck Sharp & Dohme, Mundipharma, and Gilead Sciences, Inc., outside the scope of COVID-19. MS received research funding from Gilead Sciences, Inc., EMD Serono, AbbVie, Angion, and Otsuka; and served as a scientific advisory board member for Travere, Novartis, and Mallinckrodt. KRT, FFS, CRL, and MJM have nothing to disclose.